Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3.
نویسندگان
چکیده
The Rhinelander free-air CO(2) enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO(2)) and elevated tropospheric ozone (+O(3)). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to determine whether fine-root biomass was correlated to rates of soil respiration; and to measure rates of fine-root turnover in aspen (Populus tremuloides) forests and determine whether root turnover might be driving patterns in soil respiration. Soil respiration was measured, root biomass was determined, and estimates of root production, mortality and biomass turnover were made. Soil respiration was greatest in the +CO(2) and +CO(2) +O(3) treatments across all three plant communities. Soil respiration was correlated with increases in fine-root biomass. In the aspen community, annual fine-root production and mortality (g m(-2)) were positively affected by +O(3). After 10 yr of exposure, +CO(2) +O(3)-induced increases in belowground carbon allocation suggest that the positive effects of elevated CO(2) on belowground net primary productivity (NPP) may not be offset by negative effects of O(3). For the aspen community, fine-root biomass is actually stimulated by +O(3), and especially +CO(2) +O(3).
منابع مشابه
Atmospheric Co2 and O3 Alter the Flow of N in Developing Forest Ecosystems
Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well a...
متن کاملEffects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.
Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, morta...
متن کاملGlobal Change Ecology
The aspen free-air CO2 and O3 enrichment (FACTS II–FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosys...
متن کاملAtmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems.
Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well a...
متن کاملExtracellular Enzyme Activity Beneath Temperate Trees Growing Under Elevated Carbon Dioxide and Ozone
cause these plant tissues are the primary substrates for microbial metabolism in soil. Soil microorganisms are limited by the amount and type of plantOzone is a greenhouse gas that is accumulating in the derived substrates entering soil, and we reasoned that changes in the production and biochemical constituents of plant litter produced lower atmosphere, and elevated O3 has the potential to und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 180 1 شماره
صفحات -
تاریخ انتشار 2008